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Abstract. Identifying the progression-order of an unsynchronized set of biolog‐
ical samples is crucial for comprehending the dynamics of the underlying molec‐
ular interactions. It is also valuable in many applied problems such as data
denoising and synchronization, tumor classification and cell lineage identifica‐
tion. Current methods that attempt solving this problem are ultimately based either
on polynomial and piece-wise approximation of the unknown generating function
or its reconstruction through the use of spanning trees. Such approaches face
difficulty when it is necessary to factor-in complex relationships within the data
such as partial ordering or bifurcating or multifurcating progressions. We propose
the notion of Cluster Spanning Trees (CST) that can model both linear as well as
the aforementioned complex progression relationships in data. Through a number
of experiments on synthetic data sets as well as datasets from the cell cycle,
cellular differentiation, and phenotypic screening, we show that the proposed CST
approach outperforms the previous approaches in reconstructing the temporal
progression of the data.

1 Introduction

Biochemical processes are dynamic processes expressed over time (and space). In terms
of characterizing their temporal progression, a small set of generating functions can
characterize such processes. For example, linear or polynomial functions (cell growth
[11]), cyclical functions (cell cycle [12]), and branching (bifurcating or multifurcating)
functions (cancer progression [13]). If the system under study can be sufficiently
synchronized, as with cell synchrony methods [22], characterizing the underlying
progression is relatively straightforward. Often however, this is not possible and the
temporal order has to be reconstructed from a sampling of the process. We focus on this
latter case and note that it is complicated due to epistemic and intrinsic factors such as
the unknown nature of the molecular mechanisms of action, their (putative) non-line‐
arity, phase shifts, and rate heterogeneity, as well as extrinsic factors such as under‐
sampling, and noise.

Formally, if we think of a biological process as a series of states evolving with respect
to time, the problem of constructing the temporal ordering for a set of samples requires
specifying the function f (t) = [x1(t), x2(t),… , xd(t)], where xi(t) is the value of dimen‐
sion i at time t, so the output f (t) is a point in d dimensions representing the state of the
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process at time t. This function has to be reconstructed from the samples
S = {s1,… sn}, where si = f (i) + ! with ! denoting the noise. Noise modeling is often
simplified by using well characterized distributions, such as a Gaussian. Graph-theoretic
representation of the biological data provides a powerful formalism, especially for
representing non-linear progressions. In such a representation, the complete data set is
represented by a graph Gc = (V , E) with each data point corresponding to a vertex in V
and the edges in E connecting the vertices based on some criterion. Within this frame‐
work, Minimum Spanning Trees (MST) constitute a powerful representation for
progression reconstruction [9, 10, 13]. MST-based methods assume that the tree with
the minimum total edge weight best represents the underlying process. This does not
account for relationships present in the data, such as groupings corresponding to subpro‐
cesses. Furthermore, the connectivity of a tree can be sensitive to how edges are selected
and a poor choice may misrepresent relationships in the data. To illustrate this point, we
use three different methods to reconstruct the progression of gene expression during the
cell cycle. In this example 20 proteins associated with different phases of the cell cycle
are chosen from the cell cycle cDNA expression micro array dataset [12]. Figure 1 shows
the temporal ordering reconstructed by the MST-based method [9], the Sample Progres‐
sion Discovery (SPD) method [10] and the proposed Cluster Spanning Tree (CST)
approach. All three methods accurately group proteins from the G1/S, S, and G2/M
phases, however only CST correctly groups the G2 phase proteins. Moreover, the CST
is the only method that arranges the proteins in the proper order that reflects the stages
of the cell cycle: G1/S, S, G2, G2/M. A more complete evaluation on this dataset is
presented in the results section.

Fig. 1. Progressions reconstructions from applying three reconstruction methods (MST, SPD,
and CST) to a subset of the cell cycle micro array dataset in [12].
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2 Background

Given a sampling S of size n of f, one way of reconstructing the underlying generating
function is through polygonal approximation. Polygonal reconstruction [1] builds a
connected graph G = (V , E), where the vertices V are points from S and edges E connect
the vertices such that each vertex has degree of 1 or 2 and for each set of adjacent vertices
[vi vj] corresponding to points [f(i) f(j)], there does not exist a vk: f(i) ≤ f(k) ≤ f(j). This
can be achieved by determining a traveling salesman path. The notion of principal curves
can also be used to order data points when the manifold on which they lie has a curvature.
Principal curves were introduced in [2] and constitute a non-linear generalization of
principal components. For the set S, a principal curve is defined as a smooth function fc

that passes through the center of mass of the sample set S and is self-consistent, as
defined by Eq. (1):

fc(t) = E[S|tf (S) = t] (1)

In Eq. (1), tf(S) denotes points in S that are projected to point t. That is, each point
on the principal curve coincides with the expectation of the data points that are mapped
to it. As noted in [9], principle curves may require sampling at a denser rate than is
provided in many biological contexts.

Neither polygonal reconstruction nor principal curves can be used to model branching
processes. In such cases the system at time t has more than one possible state at time t +1.
To address such issues, piece-wise representations, such as a spanning trees, have been
employed that create tessellated representations of the data and reconstruct temporal ordering
in each tessellate. A spanning tree of a complete graph Gc = (V,E) is the connected graph
Gs = (V , E′) where E′

⊆ Eand∃u ∈ V:(u, v) ∈ E′ ∨ (v, u) ∈ E′∀v ∈ V . Plainly, the subset
E

′ contains edges that span all vertices in V. Because of the limited number of edges, a
spanning tree enforces a unique path between vertices. Per Cayley’s formula [3] there are
nn−2 spanning trees on any complete graph. Therefore we must add constraints to find those
trees which are biologically meaningful. An MST on Gc is a spanning tree with the addi‐
tional constraint that ∑

e∈E′

e is the minimum across all spanning trees on Gc. MSTs can be
constructed with one of many greedy algorithms, such as Kruskal’s [4] or Boruvka’s [5] that
iteratively collect edges with the least weight to build the tree. The methods described in [9,
10] employ variations on the MST approach. In [9], the diameter path through the MST (or
multiple candidate diameters with a PQ tree in the presence of noise) are used to determine
the progression. In [10], an automated feature selection step is incorporated where MSTs are
constructed on subspaces of the original feature space. The subspaces that generate the most
similar MST topologies are merged to form the final putative MST progression.

As discussed earlier, the MST formulation cannot represent interrelationships such
as natural sub-processes or groupings in the data. However, hierarchical clustering
methods (like UPGMA [6]) may be used to identify data clusters which should be main‐
tained in the resulting temporal reconstruction. Indeed, a method like UPGMA may be
used directly for reconstructing temporal progression as in phylogenetics. A generic
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application of phylogenetic methods to this problem is however precluded, since such
methods always impose a bifurcating structure on the data.

3 Methods

We propose the idea of cluster spanning trees (CST) that can maintain temporal and
hierarchical clustering structure of the data and investigate three algorithmic variations
for CST construction. At the fundamental level, this method is a process of traversing
a hierarchical tree which represents the relations in the data and iteratively adding edges
between nodes or groupings thereof. A binary hierarchical tree Gb = (Vb, Eb) in our
formulation contains 2n-1 vertices, n is the number of data points being clustered. The
n leaf vertices represent the data points. Each of the n-1 internal vertices represent the
union of its descendants. Accordingly, the root is a set of size n. Each internal vertex vi

has two children, ci1 and ci2 each containing disjoint sets where vi = {ci1  ci2}.
Figure 2 shows an example. The CST is constructed as follows: beginning with Gb and
a graph of disconnected vertices GCST = (VCST,, ECST) where VCST is the set of original n
data points, e.g. data points in the root node of Gb and ECST is the empty set. For each
non leaf vertex vi in Vb an edge is added to ECST from the child vertices of vi, ci1 and ci2,
that connects a point in ci1 to a point in ci2 and minimizes a distance function d(ci1, ci2).
While the order in which the vertices are traversed is arbitrary and does not affect the
resulting CST, if an in-order traversal is performed, this algorithm can be understood as
the iterative merging of a set of trees into a single tree.

Fig. 2. Left, dendrogram and subsets assigned to the binary tree. Each internal node contains the
union of the two child nodes. Right, Cluster Spanning Tree constructed from the hierarchical tree.
For every internal vertex of Gb there is a connected subtree of GCST.

When this operation has been performed over all internal nodes, we are guaranteed
that for every internal node vi in Vb there exists a connected sub-tree of GCST ,

G
′

CST
= (V

′

CST
, E

′

CST
) where V

′

CST
⊆ VCST , E

′

CST
⊆ ECSTandV

′

CST
= vi. Accordingly, the

hierarchical clusters identified at the clustering stage are represented as sub-trees of the
CST. As a general framework for the downward projection of a binary hierarchical tree
of 2n−1 vertices into a tree of n−1 vertices, there are two major algorithmic components
to consider, namely, hierarchical data clustering and cluster merging.
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3.1 Hierarchical Data Clustering

There are a number of established hierarchical clustering techniques that can be utilized
to perform the initial data clustering. Methods we have investigated include the
Unweighted Average (UPGMA) [6], Weighted Average (WPGMA) [6], Complete
Linkage [6], Centroid [7], Median [7] and Incremental Sum of Squares (Ward) [8]
methods. Details on these methods can be found in the references. All of these methods
induce a hierarchical structure on the data that can be used to obtain a hierarchical clus‐
tering of the data. Non-hierarchical clustering techniques can also be employed for this
problem. To limit the scope of this paper, they are not discussed.

3.2 Cluster Merging

The second algorithmic component is the strategy used to draw edges between points
in the subsets at each bifurcation of the hierarchical binary tree. This consists primarily
of choosing a distance function to minimize. The first vertex merging strategy is the
nearest neighbor approach. An edge is drawn from the point in ci1 to the point in ci2 that
are nearest in terms of some distance measure, for example Euclidean (used in the next
three examples). Formally,

argmina∈ci1 ,b∈ci2
d(a, b) =

√∑t

j=1
(aj − bj)

2 (2)

This method is similar in principle to the traditional MST approach, except edges are
constructed between the hierarchically derived subsets. This approach can be sensitive
to outliers, for example if two outlying points in adjacent clusters happen to present the
minimum distance. To minimize the influence of outliers, we employ the second merging
method, called weighted centroids (defined in Eq. (3)) where we incorporate into the
objective function, the distance from the centroid of the corresponding cluster point.
This gives us the convex combination described in Eq. (3).

argmina∈ci1 ,b∈ci2
d(a, b) = (1 − #)

√∑t

j=1
(aj − bj)

2+

#

(√∑t

j=1
(aj − ci1)

2 +

√∑t

j=1
(bj − ci2)

2

) (3)

Here, ci1 is the mean value of points in ci1 equivalent to the centroid of points in the set and
# is a mixing value between 0 and 1. At # = 0 this becomes the same as the nearest
neighbor strategy. Our third method, centroid points, explicitly encourages the best align‐
ment to cluster centroids by choosing a point in ci1 closest to the centroid of ci2.

argmina∈ci1 ,b∈ci2
d(a, b) =

√∑t

j=1
(aj − ci2)

2 +

√∑t

j=1
(bj − ci1)

2 (4)
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While the above methods do not guarantee the construction of a minimum spanning tree
they do guarantee that higher groupings within the dataset are maintained.

4 Results

We evaluated our methods on two synthetic datasets including simulated state transitions
and data generated through a noisy polynomial generating function. We also evaluated
on biological datasets from cellular differentiation, the cell cycle, and phenotypic
screening. That the method can be successfully employed on widely differing data sets,
underscores its generic nature and broad applicability.

4.1 Synthetic Datasets

To show how CST captures the larger internal structures of a dataset, we generated
synthetic data by sampling six discrete states that have an implicit ordering along the
abscissa. Gaussian noise was introduced at varying intensities, as shown in Fig. 3. In
this example, we see that the diameter of the CST correctly passes through each of the
six states in order because it encourages the path to pass through local centers of mass.
The MST takes a simpler path and does not pass through all states. The dendrogram,
number 2 in Fig. 3, shows the hierarchical structure found by the UPGMA algorithm
that was used to guide the tree construction.

The previous dataset allowed us to observe the reconstruction of state transitions.
For a more rigorous evaluation we constructed a synthetic dataset by sampling the poly‐
nomial y = x3 + 3x2−6x−8 with Gaussian noise. This allows us to measure the recon‐
struction error of our methods and quantify the effect of increasing noise on deviation
from the ground truth polynomial as shown in Fig. 4. The CST method consistently
outperforms the MST based approaches proposed in [9,10]. Interestingly, all trees,
including MSTs, are rather robust to noise except for a significant initial spike. This
phenomenon occurs because when the noise level is low enough, the diameter path will
pass through every point. The reconstruction error will increase with noise as long as
the diameter path passes through every point, however when noise increases and outlier
points are no longer on the diameter path, the outlier error no longer contributes to the
reconstruction error, and reconstruction error stabilizes.

4.2 Reconstruction of Embryonic Stem Cell Differentiation Data

The two previous examples showed the method’s ability to reconstruct processes that
are non-branching by representing the progression as the diameter path in the tree.
However, many biological progressions are characterized by branching processes. For
example, the pluripotent embryonic stem cell (ESC) differentiation data set from [10]
contains 44 samples of mouse stem cells at different stages of differentiation. Interven‐
tions were performed on these samples to induce differentiation into trophoblasts, neural
cells, endoderm lineages, and embryonic carcinoma. Each sample contains 25,164 gene
expression measurements. After application of CST, all differentiation lineages are
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reconstructed intact and in the proper temporal order; as shown in Fig. 5, the four cell
lineages each branch off from the blue embryonic stem cells in the center of the tree.
These results are comparable to those achieved by the Sample Progression Discovery
method. The corresponding dendrogram confirms that the cell lineages are clustered in
the clustering phase and the resulting reconstruction shows that temporal order is main‐
tained within clusters.

Fig. 3. Minimum spanning tree and UPGMA spanning tree path reconstruction for a noisy
(additive Gaussian noise) synthetic data set composed of six states with an implicit horizontal
ordering. 1. The dataset showing mean values of the 6 states. 2. The UPGMA dendrogram that
shows the hierarchical clustering of the dataset used to enforce level-wise spanning tree
construction. The clustering and class-color adjacencies in the dendrogram reveal how UPGMA
spanning tree’s constructed the correct path. 3. Shows the CST built with the UPGMA and
Centroid Point merging strategy. 4. The MST built on this dataset. 5. Is the diameter path of the
CST which passes through all states in sequence. 6. The diameter path of the MST which fails to
pass through the light blue state. 7. The diameter path of the data set with increasing noise with
MST on top and CST below. The MSTs consistently fail to pass through the state coded in purple.
(Color figure online)
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4.3 Cell Cycle Reconstruction

Cellular reproduction is carried out in a well characterized and repeating sequence of
biological phases. Specifically, a cell passes through the G1 phase, S phase, G2 phase,
and then M phase to complete one iteration of the cell cycle, beginning again at G1 phase
to repeat the process. Each phase has a number of genes that carry out the underlying
biological function, these genes are often highly expressed during their associated phase.
To capture the expression dynamics at each phase, cDNA microarray samples measure
gene expression levels throughout the cycle. The gene expression profiles form natural
clusters of genes that are associated with each phase [12].

To test our approach’s ability to both capture the gene clusters and accurately recon‐
struct the sequence of phases in the process we applied the CST, MST, and SPD methods
to the expression levels of the 1099 genes in the human tumor cell cycle dataset provided
in [12]. Each gene is represented by a vertex in the tree with the color indicating its
associated phase in Fig. 6. Visibly, the CST method performs better separation of the
phases. Both the MST and SPD methods tend to merge the G2, M/G2 and G1/M gene

Fig. 4. CST and MST performance on a synthetic dataset sampled from the polynomial
y = x3 + 3x2 − 6x − 8 with Gaussian noise. 1. The original curve over the sampled points. 2. The
CST construction, 3. The MST reconstruction. 4. Is the squared reconstruction error of the six
clustering methods with nearest neighbor merging, and the MST. Noise increases left to right.
Cluster trees show consistently lower reconstruction error. 5. Reconstruction error of UPGMA
clustering with the three merging strategies described in Sect. 3.2.
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groups. Because we know that the cell cycle is a repeating sequence with no branches,
we observe the diameter path through the tree as a representation of the underlying
biological sequence. To better represent phase regions of the diameter path, we
performed neighbor smoothing whereby a vertex’s phase assignment is determined by
the majority vote of its raw phase and that of each of its neighbors. The smoothed diam‐
eter paths are shown in Fig. 6. The end points of the diameter are connected to show the
cyclical nature of the process.

Observing these diameter paths, we see that the CST method correctly reconstructs
the phase sequence with the minor exception of two G1/M phase nodes in the G1/S
phase region, this can be explained by the implied overlap of G1 phase within the two
regions. The MST method fails to represent the G1/M phase altogether while the SPD
method combines M/G2, G1/M and G2 phase proteins.

Because most nodes do not appear on the diameter path and form clusters around
the path, we measured the reconstruction error by counting the number of nodes whose
phase assignment does not match the phase assignment of its nearest diameter node. The
CST method had the lowest reconstruction error of the three methods followed by MST
and SPD respectively.

Fig. 5. Embryonic stem cell differentiation. Four cell differentiation lineages are reconstructed
in order with sequential vertices representing increasing time. The dendrogram on the left shows
the underlying hierarchical clustering that informed tree construction. The two images show that
not only are the cell lineages generally clustered together, but their temporal order is maintained
in the clusters.
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4.4 Reconstruction of Macro-parasite Phenotypic Screening Data

We consider phenotypic screening against parasites that cause the disease Schistoso‐
miasis. Our data set consists of images of 95 S. mansoni somules taken on the first,
second, third, and fourth day of exposure to a 10μM solution of the HMG-CoA reductase
inhibitor Mevastatin which has been studied for its potential anthelmintic effects [14].
Each parasite is represented by 43 quantitative image features that describe the parasite’s
shape and texture. Parasites tend to show increasingly apparent deleterious effects as
exposure time increases.

Like with the cell cycle example, this dataset contains a known linear progression
(exposure duration) and natural clustering (images of parasite groups taken on specific
days), so we seek to reconstruct the time progression of the clusters from the dataset.
Error is measured using the same metric from the cell cycle dataset, namely
mismatches along the smoothed diameter path. Figure 7 shows the trees resulting from
the three algorithms along with parasite images across the CST. The CST result shows
strong grouping and correct ordering of parasites from days one and four. It is not

Fig. 6. Cell cycle gene reconstruction. The CST, MST and SPD methods were applied to the
cell cycle gene expression microarray data. The cell cycle has a known sequence of phases:
G1, S-phase, G2, M. Each gene is represented by a node in the tree colored by its associated
phase in the cycle. The CST method properly separated the phases and reconstructed the
sequence in the correct order. Phases were not sufficiently separated with the MST and SPD
methods. The diameter paths of each tree with 1 neighbor smoothing are shown. The MST
does not contain the G1/M phase. SPD mixes M/G2, G1/M and G2 proteins. Error is computed
by summing the number of vertices that do not match the nearest diameter vertex’s phase.
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surprising that the intermediate exposure days are rather heterogeneously grouped due
to the varying rate of response that individual parasites show to the drug. While days
two and three are merged, we can interpret the results as showing three intuitive group‐
ings, initial response, intermediate response, and maximal response. It is worth noting
that, upon visual inspection of the underlying data, the three ‘Day 3’ parasites and one
‘Day 1’ parasite present in the ‘Day 4’ group all show significant effects and are prop‐
erly placed, effect-wise, with the ‘Day 4’ parasites. Similarly, the two ‘Day 4’ para‐
sites in the ‘Day 1’ group show idiosyncratic effects and are rightly not grouped with
the other ‘Day 4’ parasites.

Fig. 7. Progression reconstruction of parasite phenotypic response after the first, second third
and fourth day of exposure to 10 μM concentration of the drug Mevastatin. CST correctly groups
the first and fourth day samples, while days two and three form a heterogeneous intermediate
cluster. Example parasite images from various points on the tree are shown as well as the
progression reconstruction error.

All three tree construction methods accurately grouped the ‘Day 4’ parasites,
however only CST was able to group ‘Day 1.’ Both MST and SPD split the ‘Day 1’
group and placed them on opposite ends of the tree, significantly distorting the recon‐
struction. By reviewing the spatial organization of the underlying data through a lower
dimensional projection (not shown) we observe that, while the parasites from Day 1 are
near to each other in feature space, the MST and SPD algorithms do not take into account
the local organization and one misplaced edge has significant effects on the overall graph
topology. The local constraints enforced by CST help to ameliorate this problem and
improve the overall reconstruction.
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